Deblending and why it is Impossible

Robert Lupton

2016-06-09
Deblending: the problem
Deblending: the problem
Deblending: the problem
Stars

The problem of deblending stars is well defined; the image is made up of a set of \(\delta \)-functions convolved with a known PSF, \(\phi \):

\[
I = S + \sum_{r} F_r (x, y) \phi + n
\]

(\(I\): observed intensity; \(S\): sky level; \(F_r\): flux in \(r\)th star; \(\phi\): PSF; \(n\): noise)

All that we have to do is solve a minimisation problem in \(3r + 1\) unknowns.

Writing efficient, robust, accurate code may not be trivial.
Stars

The problem of deblending stars is well defined; the image is made up of a set of \(\delta \)-functions convolved with a known PSF, \(\phi \):

\[
l = S + \sum_r F_r \delta(x - x_r) \otimes \phi + n
\]

(\(l \): observed intensity; \(S \): sky level; \(\delta \): delta-function; \(F_r \): flux in \(r \)th star; \(\phi \): PSF; \(n \): noise)
Stars

The problem of deblending stars is well defined; the image is made up of a set of \(\delta \)-functions convolved with a known PSF, \(\phi \):

\[
I = S + \sum_r F_r \delta(x - x_r) \otimes \phi + n
\]

(\(I \): observed intensity; \(S \): sky level; \(\delta \): delta-function; \(F_r \): flux in \(r^{th} \) star; \(\phi \): PSF; \(n \): noise)

All that we have to do is solve a minimisation problem in \(3r + 1 \) unknowns.
Stars

The problem of deblending stars is well defined; the image is made up of a set of \(\delta \)-functions convolved with a known PSF, \(\phi \):

\[
I = S + \sum_r F_r \delta(x - x_r) \otimes \phi + n
\]

\(I \) : observed intensity; \(S \) : sky level; \(\delta \) : delta-function;
\(F_r \) : flux in \(r^{th} \) star; \(\phi \) : PSF; \(n \) : noise

All that we have to do is solve a minimisation problem in \(3r + 1 \) unknowns. Writing efficient, robust, accurate code may not be trivial.
Galaxies

Galaxies are harder.
Galaxies

Galaxies are harder. Something that looks like the superposition of three galaxies may well be just that, but without extra information (e.g. redshifts) we cannot be sure that it isn't simply a messy blobby irregular galaxy that happens to have three peaks --- or even a large elliptical galaxy that's being viewed through a particularly perverse dust cloud.
Galaxies

Galaxies are harder. Something that looks like the superposition of three galaxies may well be just that, but without extra information (e.g. redshifts) we cannot be sure that it isn't simply a messy blobby irregular galaxy that happens to have three peaks --- or even a large elliptical galaxy that's being viewed through a particularly perverse dust cloud.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image I. Each is associated with a `child' object.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image \(I \). Each is associated with a `child' object.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image I. Each is associated with a `child' object.

- Define a `template' T_r from each peak. This is the image formed by comparing pairs of pixels symmetrically placed about the peak of the r^{th} object, and replacing both by the lower of the two.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image I. Each is associated with a `child' object.
- Define a `template' T_r from each peak. This is the image formed by comparing pairs of pixels symmetrically placed about the peak of the r^{th} object, and replacing both by the lower of the two.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image I. Each is associated with a `child' object.
- Define a `template' T_r from each peak. This is the image formed by comparing pairs of pixels symmetrically placed about the peak of the r^{th} object, and replacing both by the lower of the two.
A 1-D Toy Problem, a `star' and two `galaxies'.

The procedure is simple:

- Find all the peaks in the image I. Each is associated with a `child' object.
- Define a `template' T_r from each peak. This is the image formed by comparing pairs of pixels symmetrically placed about the peak of the r^{th} object, and replacing both by the lower of the two.
Templates

Assume that we can write $I = \sum_r w^{(r)} T^{(r)}$, and solve for the weights in a least-squares sense.
Templates

- Assume that we can write \(I = \sum_r w^{(r)} T^{(r)} \), and solve for the weights in a least-squares sense.

- For each pixel with intensity \(I_i \), share the flux between the children:

\[
C_i^{(r)} = \frac{w^{(r)} T^{(r)}}{\sum w^{(r)} T^{(r)}} I_i
\]
Assume that we can write $I = \sum_r w^{(r)} T^{(r)}$, and solve for the weights in a least-squares sense.

For each pixel with intensity I_i, share the flux between the children:

$$C_i^{(r)} = \frac{w^{(r)} T^{(r)}}{\sum w^{(r)} T^{(r)}} I_i$$
Templates

- Assume that we can write $I = \sum_r w^{(r)} T^{(r)}$, and solve for the weights in a least-squares sense.

- For each pixel with intensity I_i, share the flux between the children:

$$C_i^{(r)} = \frac{w^{(r)} T^{(r)}}{\sum w^{(r)} T^{(r)}} I_i$$
Templates

- Assume that we can write $I = \sum_r w^{(r)} T^{(r)}$, and solve for the weights in a least-squares sense.
- For each pixel with intensity I_i, share the flux between the children:

 $$C_i^{(r)} = \frac{w^{(r)} T^{(r)}}{\sum w^{(r)} T^{(r)}} I_i$$
Models

You can, of course, think of these templates as a sort of non-parametric model.
Models

You can, of course, think of these templates as a sort of non-parametric model. We suspect that we'll be forced to stronger assumptions to handle data at the HSC/LSST depths.
Examples of Deblending
Examples of Deblending (problems)
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy.

Solutions:
- Remove non-significant peaks
- Remove "too-similar" templates
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy. Solutions:
- Remove non-significant peaks
- Remove "too-similar" templates

Deblending and why it is Impossible
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy

Solutions:
- Remove non-significant peaks
- Remove "too-similar" templates
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy

Solutions:

- Remove non-significant peaks
Shredded Galaxies

The problem is that there were many peaks detected within the galaxy.

Solutions:

- Remove non-significant peaks
- Remove "too-similar" templates
Shredded Galaxies
The End
A Proposed Workaround

Measure PSF-matched aperture magnitudes (proposal: 1.1" to match PFS fibres) for:

- The child
- The parent at the position of the child
A Proposed Workaround

Measure PSF-matched aperture magnitudes (proposal: 1.1" to match PFS fibres) for:

- The child
- The parent at the position of the child
A Proposed Workaround

Measure PSF-matched aperture magnitudes (proposal: 1.1” to match PFS fibres) for:

- The child
- The parent at the position of the child